News

Welcome aboard to our new student Eran Altschuler

25 October 2018

We welcome our new M.Sc. student Eran Altschuler!

Congratulations and warm wishes to our students Inbal and Yosef

27 January 2018

To Inbal for the birth of her daughter, and to Yosef for the birth of his son. We wish them and their families joy and happiness

« »

New publications

Contrasting aspects of tailswinds and asymmetrical response to crosswinds in soaring migrants

21 February 2018

Becciu, P., Panuccio, M., Catoni, C., Dell'Omo, G., and Sapir, N. 2018. Behavioral Ecology and Sociobiology 72(28). https://doi.org/10.1007/s00265-018-2447-0  

Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

21 February 2018

Achache Y, Sapir N, Elimelech Y. 2018. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult. Royal Society Open Science 5: 171766. http://dx.doi.org/10.1098/rsos.171766  

Moving in the Anthropocene: Global reductions in terrestrial mammalian movements

24 January 2018

Science 359 (6374): 466-469 http://science.sciencemag.org/content/359/6374/466  

« »

Individual-based modelling of resource competition...

Zurell, D., Eggers, U., Kaatz, M., Rotics, S., Sapir, N., Wikelski, M., Nathan, R. and Jeltsch, F. (2015). Individual-based modelling of resource competition to predict density-dependent population dynamics: a case study with white storks. Oikos 124(3): 319-330.

 

ABSTRACT

Density regulation influences population dynamics through its effects on demographic rates and consequently constitutes a key mechanism explaining the response of organisms to environmental changes. Yet, it is difficult to establish the exact form of density dependence from empirical data. Here, we developed an individual-based model to explore how resource limitation and behavioural processes determine the spatial structure of white stork Ciconia ciconia populations and regulate reproductive rates. We found that the form of density dependence differed considerably between landscapes with the same overall resource availability and between home range selection strategies, highlighting the importance of fine-scale resource distribution in interaction with behaviour. In accordance with theories of density dependence, breeding output generally decreased with density but this effect was highly variable and strongly affected by optimal foraging strategy, resource detection probability and colonial behaviour. Moreover, our results uncovered an overlooked consequence of density dependence by showing that high early nestling mortality in storks, assumed to be the outcome of harsh weather, may actually result from density dependent effects on food provision. Our findings emphasize that accounting for interactive effects of individual behaviour and local environmental factors is crucial for understanding density-dependent processes within spatially structured populations. Enhanced understanding of the ways animal populations are regulated in general, and how habitat conditions and behaviour may dictate spatial population structure and demographic rates is critically needed for predicting the dynamics of populations, communities and ecosystems under changing environmental conditions.

About us

We are a group of scientists devoted to the study of animal flight, including animal movement ecology, behavior, physiology and biomechanics. We study wild animals in the field and in the lab using a diversity of research approaches. We welcome applications for M.Sc. and Ph.D. studies and post-doctoral work in our group at the Department of Evolutionary and Environmental Biology at the University of Haifa.