News

Welcome aboard to our new student Eran Altschuler

25 October 2018

We welcome our new M.Sc. student Eran Altschuler!

Congratulations and warm wishes to our students Inbal and Yosef

27 January 2018

To Inbal for the birth of her daughter, and to Yosef for the birth of his son. We wish them and their families joy and happiness

« »

New publications

Feather moult and bird appearance are correlated with global warming over the last 200 years

05 July 2019

Kiat, Y., Vortman, Y., and N. Sapir. (2019) Feather moult and bird appearance are correlated with global warming over the last 200 years. Nature Communications 10 (2540). doi: https://doi.org/10.1038/s41467-019-10452-1 ABSTRACT...

Fruit consumption in migratory passerines is limited by water ingestion rather than by body water balance

05 July 2019

Domer, A., Shochat, A., Ovadia, O., and N. Sapir (2019) Fruit consumption in migratory passerines is limited by water ingestion rather than by body water balance. Journal of Avian Biology...

« »

Long-distance biological transport processes through the air: can nature’s complexity be unfolded in-silico?

Nathan, R., Sapir, N., Trakhtenbrot, A., Katul, G.G., Bohrer, G., Otte, M., Avissar, R., Soons, M.B., Horn, H.S., Wikelski, M. and Levin, S.A. 2005. Long-distance biological transport processes through the air: can nature’s complexity be unfolded in-silico? Diversity and Distributions 11:131-137.

 

ABSTRACT

Understanding and predicting complex biological systems are best accomplished through the synthesis and integration of information across relevant spatial, temporal and thematic scales. We propose that mechanistic transport models, which integrate atmospheric turbulence with information on relevant biological attributes, can effectively incorporate key elements of aerial transport processes at scales ranging from a few centimetres and fractions of seconds, to hundreds of kilometres and decades. This capability of mechanistic models is critically important for modelling the flow of organisms through the atmosphere because diverse aerial transport processes — such as pathogen spread, seed dispersal, spider ballooning and bird migration — are sensitive to the details of small-scale short-term turbulent deviations from the mean airflow. At the same time, all these processes are strongly influenced by the typical larger-scale variation in landscape structure, through its effects on wind flow patterns. We therefore highlight the useful coupling of detailed atmospheric models such as large eddy simulations (LES), which can provide a high-resolution description of turbulent airflow, with regional atmospheric models, which can capture the effects of landscape heterogeneity at various scales. Further progress in computational fluid dynamics (CFD) will enable rigorous exploration of transport processes in heterogeneous landscapes.

About us

We are a group of scientists devoted to the study of animal flight, including animal movement ecology, behavior, physiology and biomechanics. We study wild animals in the field and in the lab using a diversity of research approaches. We welcome applications for M.Sc. and Ph.D. studies and post-doctoral work in our group at the Department of Evolutionary and Environmental Biology at the University of Haifa.