News

Welcome aboard to our new student Eran Altschuler

25 October 2018

We welcome our new M.Sc. student Eran Altschuler!

Congratulations and warm wishes to our students Inbal and Yosef

27 January 2018

To Inbal for the birth of her daughter, and to Yosef for the birth of his son. We wish them and their families joy and happiness

« »

New publications

Feather moult and bird appearance are correlated with global warming over the last 200 years

05 July 2019

Kiat, Y., Vortman, Y., and N. Sapir. (2019) Feather moult and bird appearance are correlated with global warming over the last 200 years. Nature Communications 10 (2540). doi: https://doi.org/10.1038/s41467-019-10452-1 ABSTRACT...

Fruit consumption in migratory passerines is limited by water ingestion rather than by body water balance

05 July 2019

Domer, A., Shochat, A., Ovadia, O., and N. Sapir (2019) Fruit consumption in migratory passerines is limited by water ingestion rather than by body water balance. Journal of Avian Biology...

« »

Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

Achache Y, Sapir N, Elimelech Y. 2018. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult. Royal Society Open Science 5: 171766. doi: http://dx.doi.org/10.1098/rsos.171766

ABSTRACT

Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feathermoult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing’s ability to  generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findingsmay explain the evolution of wing morphology andmoult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under  several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight.

About us

We are a group of scientists devoted to the study of animal flight, including animal movement ecology, behavior, physiology and biomechanics. We study wild animals in the field and in the lab using a diversity of research approaches. We welcome applications for M.Sc. and Ph.D. studies and post-doctoral work in our group at the Department of Evolutionary and Environmental Biology at the University of Haifa.