Welcome aboard to our new student Eran Altschuler

25 October 2018

We welcome our new M.Sc. student Eran Altschuler!

Congratulations and warm wishes to our students Inbal and Yosef

27 January 2018

To Inbal for the birth of her daughter, and to Yosef for the birth of his son. We wish them and their families joy and happiness

« »

New publications

Contrasting aspects of tailswinds and asymmetrical response to crosswinds in soaring migrants

21 February 2018

Becciu, P., Panuccio, M., Catoni, C., Dell'Omo, G., and Sapir, N. 2018. Behavioral Ecology and Sociobiology 72(28).  

Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

21 February 2018

Achache Y, Sapir N, Elimelech Y. 2018. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult. Royal Society Open Science 5: 171766.  

Moving in the Anthropocene: Global reductions in terrestrial mammalian movements

24 January 2018

Science 359 (6374): 466-469  

« »

Determinants of wing-feather moult speed in songbirds

Kiat, Y., Izhaki, I. and Sapir, N. 2016. Determinants of wing-feather moult speed in songbirds. Evolutionary Ecology 30(3). DOI: 10.1007/s10682-016-9838-3.


Wing morphology is known to strongly affect flight performance by affecting lift and drag during flight. Performance may consequently deteriorate during feather moult due to the creation of feather gaps in the wing. Since wing gap size may directly affect the extent of reduced flight capacity, rapid moult involving the creation of large feather gaps is expected to substantially impair flight compared with the small gaps induced by a slower moult. To examine the factors affecting wing-feather moult speed, we studied adults of nineteen resident or very short-distance migrant passerine species during their postbreeding moult using a model-selection framework following a phylogenetically controlled analysis. We examined the speed of wing-feather moult in relation to each species’ flight distance index that was estimated based on local foraging movements rather than on longer flights (e.g., migration), assessed by the Delphi technique of expert evaluation. Moult speed was also examined with respect to six morphometric variables: body mass, wing loading, the feather comprising the tip of the wing, aspect ratio, wing span, and wing area. Our results suggest that flight distance index is the most important factor determining the speed of wing-feather moult in songbirds. Species that regularly fly a shorter distance were found to moult quickly, and those that take relatively longer flights moult slowly. These results suggest that the aerodynamic cost of wing area reduction due to feather moult shapes the evolution of annual routine processes by dictating a slower moult speed (resulting in small wing gaps) for species that regularly fly long distances and consequently may be affected more substantially by large wing gaps compared with short distance flyers.

About us

We are a group of scientists devoted to the study of animal flight, including animal movement ecology, behavior, physiology and biomechanics. We study wild animals in the field and in the lab using a diversity of research approaches. We welcome applications for M.Sc. and Ph.D. studies and post-doctoral work in our group at the Department of Evolutionary and Environmental Biology at the University of Haifa.